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Abstract
Language models encode and subsequently perpetuate harmful
gendered stereotypes. Research has succeeded in mitigating some
of these harms, e.g. by dissociating non-gendered terms such as
occupations from gendered terms such as ‘woman’ and ‘man’. This
approach, however, remains superficial given that associations are
only one form of prejudice through which gendered harms arise.
Critical scholarship on gender, such as gender performativity the-
ory, emphasizes how harms often arise from the construction of
gender itself, such as conflating gender with biological sex. In lan-
guage models, these issues could lead to the erasure of transgender
and gender diverse identities and cause harms in downstream appli-
cations, from misgendering users to misdiagnosing patients based
on wrong assumptions about their anatomy.

For FAccT research on gendered harms to go beyond superfi-
cial linguistic associations, we advocate for a broader definition of
‘gender bias’ in language models. We operationalize insights on the
construction of gender through language from gender studies liter-
ature and then empirically test how 16 language models of different
architectures, training datasets, and model sizes encode gender.
We find that language models tend to encode gender as a binary
category tied to biological sex, and that gendered terms that do not
neatly fall into one of these binary categories are erased and pathol-
ogized. Finally, we show that larger models, which achieve better
results on performance benchmarks, learn stronger associations
between gender and sex, further reinforcing a narrow understand-
ing of gender. Our findings lead us to call for a re-evaluation of
how gendered harms in language models are defined and addressed.

Warning: This article discusses the erasure and pathologization of
transgender and gender diverse identities in academic literature and
in language models.

CCS Concepts
• Computing methodologies → Natural language processing;
• Applied computing→ Sociology.
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1 Introduction
Language plays a key role in constructing, reinforcing, and subvert-
ing gender norms [1]. The English language, for example, constructs
gender by assigning the binary categories ‘boy’ and ‘girl’ to babies
at birth, reinforces gender through phrases such as ‘boys will be
boys’ and ‘throw like a girl’, and subverts gender through terms
not fitting into the ‘boy/girl’ binary, such as the use of ‘they/them’
as singular pronouns. The more frequently some gender norm is
expressed through language, the more it is normalized [5]. Con-
versely, gendered experiences not often expressed through language
might be perceived as abnormal, unacceptable, or even unimagin-
able. Language models (LMs) encode these norms from the books,
online news articles, and online forums that make up their training
data [2, 15, 19, 27, 42]. Encoding human biases and their representa-
tion in popular culture, LM-based technologies can then persistently
reproduce prejudice against sexual orientation or gender identity.

In an effort to mitigate bias and discrimination in LMs, com-
puter scientists have audited LMs for harmful stereotypes. This
research has contributed to understanding and reducing these
harms [21]. For example, researchers have used large dictionar-
ies of ‘bias probes’ and ‘prefix templates’ to elicit biased sentence
completions [40, 41]. Further research on downstream applications,
notably in HR and recruitment as well as in clinical and medical
applications, showed that LMs consistently stereotype certain races,
ethnicities, and genders. Subsequently, new approaches have been
developed which target training datasets (e.g. by re-balancing data
with pre-defined list of biased word pairs such as ‘he/she’ and
‘king/queen’ [28]), learning phase (e.g. by adding an equalizing
regularization term to the loss function that produces embeddings
with less association between ‘he/she’ pronouns and occupations
and by using reinforcement learning with human feedback), or post-
processing phase (e.g. by setting prompts that help avoid biased
sentence completion, or replacing stereotypical keywords) [21].

However, while debiasing efforts reduce easy-to-see forms of
bias in simple benchmarks, they fail to address more complex and
deeply ingrained associations [33, 46], especially in adversarial set-
tings [35] or in Chain of Thought settings that prompt models to
‘think’ [39], both circumventing debiasing efforts. Hofmann et al.
[23] found that such efforts can successfully reduce negative overt
racist stereotypes but exacerbate covert stereotypes, in the form of
dialect prejudice. For example, somemodels are optimized to reduce
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the association of ‘he/she’ pronouns or ‘black/white’ racial cate-
gories with occupations. This may not affect cases where gender is
inputed from pronouns other than ‘he/she’, or race from racialised
terms other than ‘black/white’, e.g. through implicit information
such as dialect or writing style. Moreover, models optimized accord-
ing to specific categories such as ‘man’ and ‘woman’ risk essential-
izing complex social identities such as gender into a narrow set of
biological attributes or culturally dominant norms, by reinforcing
the idea that these categories are fixed, universal, or exhaustive.

Addressing bias and discrimination in LMs requires moving be-
yond aligning models with pre-existing human preferences, by
leveraging decades of critical research from the social sciences
on how social characteristics are and should be represented in lan-
guage [3]. Research in fields such as gender studies, sociolinguistics,
feminist studies, and queer studies highlights the importance of
language not merely in representing gender, but also in construct-
ing, reinforcing, and subverting gender norms [1]. Critically, they
show that gendered harms often arise from the construction of
gender itself, instead of from stereotypical linguistic associations.
For example, gender and sex are frequently linked narrowly in lan-
guage (man linked to male, woman linked to female). This strong
association can be harmful both to cisgender people (e.g., if the abil-
ity to conceive is narrowly tied to womanhood, this is harmful to
cisgender women wo do not want to or cannot get pregnant) and to
transgender and gender diverse people (e.g., a transgender woman
who cannot get pregnant might be excluded from womanhood on
this basis). Additionally, by defining classifications of gender (e.g.,
man and woman), language can contribute to the erasure of gender
identities that are not considered in such classifications, such as
transgender and gender diverse people. We build on these insights
from gender studies, and apply them to the study of LMs.

We derive three main insights on the importance of language
from Butler’s works on gender performativity and apply them to
LMs: (a) distinction between gender and sex (LMs should not essen-
tialize gender by conflating it with biological sex), (b) meaningful
embeddings of diverse genders (LMs should provide meaningful em-
beddings for all gender identity terms), and (c) non-stereotypical
representations (LMs should not encode harmful stereotypes about
any gender identity terms).

We test how 16 LMs, including versions of Llama,Mistral, RoBERTa,
T5, and GPT, construct gender, by measuring the conditional prob-
ability they assign in model predictions across different contexts
related to sex, gender, and illnesses. Firstly, we find that most of the
tested models appear to follow essentializing patterns regarding
the relationship between gendered words and sex characteristics
(e.g., associating ‘man’ with testosterone and ‘woman’ with estro-
gen). Crucially, we find that gender and sex are conflated more as
models get larger. Secondly, some of the models consistently as-
sociate unrelated non-human words with sex characteristics more
strongly than they do words associated with transgender and gen-
der diverse people, such as the words ‘nonbinary’, ‘transgender’,
‘genderqueer’, ‘genderfluid’, and ‘two-spirit’. This indicates a lack
of meaningful embeddings for these words. Finally, most models
appear to encode harmful pathologizing associations for transgen-
der and gender diverse words, in particular by associating them
with mental illness.

Left unchecked, the essentializing and pathologizing issues we
uncovered could have harmful consequences in numerous settings.
Our findings affirm the need to consider concepts such as gender
beyond simple alignment practices, by engaging critically with
them throughout the entire model development process. Ultimately,
we hope that efforts to investigate how various social attributes are
conceptualized by LMs can lead to the development of models that
do not perpetuate, but mitigate, the harms associated with narrow
and essentialist definitions.

2 Background
2.1 The Construction of Sex and Gender

through Language
Gender and sex are frequently not recognized as separate concepts
in discourse on gender. Instead, gender is often framed as binary (ev-
ery person fits into one of the distinct categories ‘man’ or ‘woman’),
immutable (this category can not change), and physiological (this
category is assigned based on physical characteristics) [26, p. 88].
This binary, immutable, and physiological understanding of gender
is called the ‘folk understanding’ [26]. While this understanding of
gender is not universal across cultures or historical periods, it is
dominant in many Western and English-speaking contexts.

The folk understanding of gender has been extensively critiqued
in gender studies. In particular, scholars have highlighted how
sex and gender are not inherently linked, but become interlinked
through their social construction [47]. As Simone de Beauvoir
writes in The Second Sex on the construction of gender, ‘one is
not born, but rather becomes, a woman’ [11, p. 267]. Similarly, Ju-
dith Butler challenges the innateness of sex by asking ‘is it natural,
anatomical, chromosomal, or hormonal’ [5, p. 9]. This untangling
of the elements that make up a supposedly binary sex leads Butler
to question: ‘if the immutable character of sex is contested, perhaps
this construct called “sex” is as culturally constructed as gender’ [5,
p. 9]. Instead of portraying sex as a precursor to gender (as does
the folk understanding), Butler therefore argues that gender and
sex become interlinked in their social construction [6].

According to gender theorists, language plays a crucial role in the
interlinked construction of sex and gender. By describing concepts,
language allows us to imagine them more easily. Therefore, the
power of language lies in creating an ‘imaginable domain’ [5, p. 12].
By providing ways to describe some gendered experiences but not
others, language can limit which genders and gender expressions
are considered normal, acceptable, and even possible. For example,
the English language provides many words for articulating binary
sex and gender categories (the male and the man, the female and
the woman). Through this, ‘language gains the power to create “the
socially real”’ [5, p. 156].

2.2 The Pathologization of Sex and Gender
outside a Binary

When individuals’ bodies and gender expressions do not align with
the sexed and gendered norms defined through language, individu-
als face significant social sanctions. Foucault, for example, illustrates
this in the book Herculine Barbin, where he retraced the struggles
of a French intersex person born in 1838. As their body did not fit
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into a ‘male’ nor ‘female’ norm, legal and medical institutions of the
time were not able to categorize Barbin within the gender and sex
binary [20]. This led to a series of institutional interventions, includ-
ing medical examinations and legal debates over how to determine
someones ‘true’ sex, hidden behind ‘anatomical deceptions’ [20, p.
8]. To this day, intersex babies are still routinely operated to fit into
a ‘male’ or ‘female’ category [31].

In the 20th century, frameworks such as the Diagnostic and
Statistical Manual of Mental Disorders (DSM) and International
Classification of Diseases (ICD) classified gender variance as ‘disor-
dered’ [16, 17]. These categorizations both entrenched stigma and
positioned medical institutions as gatekeepers of legitimacy and
care [9, 13, 24]. While terminology evolved from the diagnosis of a
‘gender identity disorder’ to ‘gender dysphoria’ in the 2013 DSM
edition (DSM-5), scholars nevertheless argue that the structural
underpinnings of gatekeeping persist [10, 24].

Narrow norms for acceptable expressions of sex and gender are
enforced by pathologizing sex and gender outside a binary. Ac-
cording to Ian Hacking, the historical and ongoing role of medical
institutions in defining and enforcing gender norms lies, at least
partially, in its ability to construct scientific classifications. These
classifications ‘may bring into being a new kind of person’ [22,
p. 285]. Scientific knowledge, rooted in social, medical, and bio-
logical Western sciences, has historically created and reinforced
the folk understanding of gender in its scientific classifications,
by rigidly linking gender to sex. As a result, Hacking suggests
that these classifications create stereotypes which, in the case of
the folk understanding of gender, lead to the pathologization of
non-normative gender expressions and reinforce an exclusionary
imaginable domain of gender identity.

2.3 Folk Understanding of Gender in Previous
Evaluations of Language Models

A decade ago, the popular experiment king+woman–man ≈ queen
illustrated the potential of Natural Language Processing (NLP) in
capturing lexical relations through LMs [45]. Concretely, the exper-
iment demonstrated that the vectorial representation of the word
king, when summed with woman and subtracted by man, resulted
in the representation of queen1.

Researchers have since used the vectorial representation ofwords
to uncover biased and stereotypical representations of gender in
LMs. Bolukbasi et al. have notably discovered that, similar to the
association between ‘woman’ and ‘queen’, there also exist other
gendered associations in word embeddings, such as computer pro-
grammer+woman–man ≈ homemaker. Bolukbasi et al. consider
the association between woman and homemaker to be inappropri-
ate, and propose a method for removing such associations from
word embeddings. Conversely, they find the association prostate
cancer+she–he ≈ ovarian cancer to be appropriate, and explicitly
ensure this remains in the embeddings [4, p. 2]. This choice, how-
ever, conflates biological sex characteristics with linguistic gender,
implying that someone with ovaries cannot be associated with the
pronoun he, or someone with a prostate cannot be associated with
she. Such assumptions reinforce a folk understanding of gender by

1This example is not meant as an illustration of bias, but rather as an illustration of
how word embeddings can model semantic relationships.

reducing gender to a binary construct (he/she) and aligning these
categories with biological sex characteristics.

Despite an extensive focus on removing gender bias from lan-
guage models, problematic assumptions such as the folk under-
standing of gender are rarely questioned. For example, Devinney
et al. [12] surveyed 176 articles that aim to identify or mitigate
gender bias in NLP systems. Over 93% of the articles they surveyed
operationalized gender as a binary category. While some mention
this as a limitation of their research, only 7% of the surveyed articles
provide a proper definition of gender that is inclusive of transgen-
der and/or nonbinary individuals, with more than half of these
articles not extending their analysis to explicitly reflect this.

2.4 Previous Critical Evaluations of Gender in
Language Models

The relatively few articles on gender bias in NLP that operationalize
gender beyond a folk understanding are concerned primarily with
addressing anti-LGBTQIA+ bias [14, 18, 32, 36]. While critical gen-
der theory and queer studies overlap greatly in the social sciences,
there exists a notable divide in FAccT and NLP literature. Most
gender bias literature addresses performance differences between
binary cisgender women and men, while research addressing bias
against non-cisgender individuals is labeled as LGBTQIA+-related
and discussed separately. However, this separation ignores the great
intersection between both gender and anti-LGBTQIA+ bias, which
both stem from similar patriarchal structures [48]. Additionally,
this separation fails to recognize that the folk understanding of
gender is not just an issue within the LGBTQIA+ community, but
can also harm cisgender heterosexual individuals. For example, the
ways in which the folk understanding of gender equates the ability
to conceive with womanhood is not just harmful to transgender
people, but also to cisgender women who, for various reasons, are
not able to or do not want to get pregnant. Thus, we believe that a
more nuanced understanding of gender is important for all work
on gender bias in NLP, not just such work that focuses specifically
on the LGBTQIA+ community.

This article contributes to the FAccT and NLP literature by in-
troducing an empirical framework for testing how LMs encode and
reproduce the folk understanding of gender. While previous work
has focused on how gendered stereotypes are reproduced by LMs,
we go further by illustrating how gender itself is constructed in
LMs. This aligns with Butler’s theories on the interplay of gender,
language and power. Just as gender theorists argue that language
not only reflects, but also actively constructs, gender by associating
it narrowly with sex, LMs might also contribute to the continued re-
production of narrow and exclusionary concepts of gender through
encoding this folk understanding. Moreover, our empirical results
reveal that this perpetuation leads to the pathologization of gender
in LMs, with clear patterns linking gendered terms that subvert the
folk understanding to mental illness. This underscores the urgent
need for interdisciplinary scholarship at the crossroads of NLP and
gender studies. Such collaboration can provide a deeper critique of
how computational models continue to reinforce cultural norms
and assumptions regarding gender.
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3 Methods
3.1 Measuring Conditional Probabilities from

Language Models
We probe implicit associations between gendered and sexed words,
as well as associations between gendered words and physical or
mental illnesses. To investigate these associations made by LMs,
we use a standard approach by comparing, for each tested model,
the probability distribution assigned to short stereotypical sen-
tences [21].

To test both autoregressive and masked LMs, we design these
sentences in a standardized manner, starting with a context (e.g.
‘The person who has testosterone is’) followed byword(s) of interest
(e.g. ‘a woman’). Autoregressive models such as GPT2 are trained
to predict the next token after a sequence of tokens, while masked
models such as RoBERTa are trained to predict masked tokens
from preceding and subsequent tokens in a sequence. Crafting all
sentences with a context followed by a word of interest allows
us to calculate, for each model and each sentence, the probability
of the predicted word of interest conditional on the context. If
the predicted word of interest is split over multiple tokens, we
calculate the joint probability over all tokens (using the sum of log
probabilities) [23]. For example, if the word ‘nonbinary’ is tokenized
as ‘non-bi-nary’, we sum the log probabilities of these three tokens.

Using this general approach, we construct two sets of sentences.
We designed the first set to investigate how gender is associated
with sex in LMs. This mirrors how social theorists argue that gender
is frequently constructed through sex in natural language (see Sec-
tion 2.1). Thus, we are interested in the probability of different
gendered predictions, conditioned on the sex-related context of a
sentence. We designed the second set of sentences to investigate
how illness is associated with genders that subvert norms. This
mirrors how social theorists argue that non-normative expressions
of gender often lead to pathologization in society (see Section 2.2).
Thus, we are interested in the probability of different illness-related
predictions, conditioned on the gender-related context of a sen-
tence.

3.1.1 Sex-Gender Association and Non-Human Baseline. We define
the conditional probability P(𝑔 | Context(𝑠);𝜃 ) as the probability
that a model 𝜃 outputs gender identifier 𝑔 after the context:

Context(𝑠) ≔ "The person who [is/has/has a] 𝑠 is"

where 𝑠 is a sex characteristic from the set 𝑆 = {male, penis, prostate,
testosterone, XY chromosomes, female, vagina, uterus, estrogen,
XX chromosomes}, and 𝑔 is a gender identifier from the set 𝐺 = {a
man, a woman, transgender, nonbinary, genderqueer, genderfluid,
two-spirit}. For instance, P(a man | Context(testosterone);𝜃 ) is
the probability that a model 𝜃 assigns to “a man” in the sentence
“The person who has testosterone is a man”.

In order to determine the degree to which each model learns
to associate sex characteristics with gender identifiers, we also
measured conditional probabilities on unrelated, non-human words
of interest. We generated a list of 50 random nouns between 9
and 13 characters using the Python library wonderwords.2 We
excluded three human-related words (bartender, instructor, and

2https://github.com/mrmaxguns/wonderwordsmodule

creationist), resulting in 47 non-human nouns. The full list of non-
human baseline words we used can be found in Appendix A.4.
Using the same approach as for gender-sex associations, we then
measured the conditional probability of each non-human noun
following each sex characteristics context Context(𝑠).

3.1.2 Gender-Illness Association. We define the conditional proba-
bility P(𝑖 | Context(𝑔);𝜃 ) as the probability that a model 𝜃 outputs
illness 𝑖 after the context:

Context(𝑔) ≔ "The person who is 𝑔 has"

where 𝑔 is a gender identifier from the set 𝐺 = {a man, a woman,
transgender, nonbinary, genderqueer, genderfluid, two-spirit}, and 𝑖
an illness from a comprehensive set of 110 illness-related words de-
rived from physical illnesses listed in the Global Burden of Disease
Study 2021 and from mental illnesses recognized by the American
Psychological Association (for a complete list of illness terms, see
Appendix A.4). For instance, P(anxiety | Context(transgender);𝜃 )
is the probability that a model 𝜃 assigns to ‘anxiety’ in the sentence
‘The person who is transgender has anxiety’.

3.2 Comparing Probabilities using Log
Probability Ratios

To compare how the probabilities of gendered and illness-related
completions change depending on sexed and gendered contexts,
we use log probability ratios (LPR). LPRs are a common metric
used to compare probabilities extracted from LMs. They are par-
ticularly useful in highlighting the degree of change in very small
probabilities. In general, a log probability ratio is expressed as
LPR = logP(A) − logP(B). The ratio is positive if the probability
of A is greater than the probability of B.

We calculate three different LPRs. The first compares the proba-
bility between different gendered predictions given a specific sexed
context. This allows us to investigate how the probabilities of pre-
dictions that align with common associations between sex and
gender change as models get larger. The second compares the prob-
ability of a specific gendered prediction given differently sexed
contexts. This allows us to investigate how specific sex characteris-
tics lead to differently gendered predictions. The third compares
the probability of a specific illness-related prediction, given differ-
ently gendered contexts. This allows us to investigate how specific
gendered contexts lead to different pathologization in predictions.

3.2.1 Folk-Subversive Log Probability Ratio. To test whether amodel
𝜃 learns folk associations between gender and sex, we compare the
probabilities of folk associations of gender and sex (e.g. ‘The person
who has testosterone is a man’) with the probabilities of subversive
associations (e.g. ‘The person who has testosterone is nonbinary’).
The Folk–Subversive log probability ratio can be expressed as:

Folk–Subversive LPR(𝜃 ) ≔
1
|𝐺 |

∑︁
𝑔∈𝐺

∑︁
𝑠∈𝑆

𝛿FOLK (𝑔, 𝑠) · log (P(𝑔 | Context(𝑠);𝜃 )) (1)

where 𝛿FOLK (𝑔, 𝑠) indicates if𝑔 and 𝑠 align with the folk understand-
ing (+1 for ‘a man’ in the five contexts with male sex characteristics,
and or ‘a woman’ in the five contexts with female sex characteris-
tics) or do not align (−1 for ‘a woman’, ‘nonbinary’, ‘transgender’,

https://github.com/mrmaxguns/wonderwordsmodule
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‘genderqueer’, ‘genderfluid’, and ‘two-spirit’ in contexts with male
sex characteristics, or ‘a man’, ‘nonbinary’, ‘transgender’, ‘gen-
derqueer’, ‘genderfluid’, and ‘two-spirit’ in contexts with female sex
characteristics). A value greater than zero indicates folk understand-
ing of gender while a value lesser than zero indicates subversive
understanding of gender.

3.2.2 Sex–Gender Log Probability Ratio. To test how sexed con-
texts influence gendered predictions, we compare the probability
of a specific gendered prediction (e.g., ‘a man’), when conditioned
on two differently sexed contexts (e.g., ‘The person who has testos-
terone is’ vs. ‘The person who has estrogen is’). This approach
involves using matched contexts that align male and female sex
characteristics, then comparing the probability of specific predic-
tions. Termed ‘matched guise probing’, this technique of matching
contexts and subsequently comparing the probability of a specific
prediction was proposed by Hofmann et al. [23]. It allows us to
analyze how gendered associations vary based on the sexed infor-
mation within a prompt. This method reflects the societal process
of assigning gender based on (perceived) sex characteristics.

We compare the conditional probability of a gendered prediction
given two ‘matched’ sexed contexts using a LPR expressed as:
Sex–Gender LPR(𝑠, 𝑔;𝜃 ) ≔ log (P(𝑔 | Context(𝑠);𝜃 ))

− log
(
P(𝑔 | Context(𝑠′);𝜃 )

) (2)

where 𝑠 ∈ 𝑆𝐹 , the set of female characteristics (female, vagina,
uterus, estrogen, XX chromosomes), and 𝑠′ its matched character-
istics in 𝑆𝑀 , the set of male characteristics (male, penis, prostate,
testosterone, XY chromosomes). Sex–Gender LPR(𝑠, 𝑔;𝜃 ) is posi-
tive if the probability of gendered prediction 𝑔 is greater in the
female context 𝑠 compared to the matched male context 𝑠′—and
negative otherwise.

3.2.3 Gender–Illness Log Probability Ratio. To test how gendered
contexts influence illness-related predictions, we compare the prob-
ability of a specific mental or physical illness-related prediction

(e.g., ‘depression’), when conditioned on two differently gendered
contexts (e.g., ‘The person who is a man has’ vs. ‘The person who
is nonbinary has’). We use the same ‘matched guised probing’ ap-
proach as for Sex–Gender LPR (see Section 3.2.2) with twomatching
contexts. We match sentences containing the gendered contexts
‘a woman’, ‘nonbinary’, ‘transgender’, ‘genderqueer’, ‘genderfluid’,
and ‘two-spirit’ to an otherwise equivalent sentence with the con-
text ‘a man’. This allows us to analyze how illness-related associa-
tions vary based on gendered information within a context. This
method reflects the societal process of pathologizing individuals
based on their (perceived) gender or gender-nonconformity.

We compare the conditional probability of an illness-related
prediction given two ‘matched’ gendered contexts using a LPR,
Gender–Illness LPR, expressed as:

Gender–Illness LPR(𝑔, 𝑖;𝜃 ) ≔ log (P(𝑖 | Context(𝑔);𝜃 ))
− log

(
P(𝑖 | Context(𝑔′);𝜃 )

)
(3)

where 𝑔 is a gender identifier from the set {a woman, transgender,
nonbinary, genderqueer, genderfluid, two-spirit} and 𝑔′ = ‘a man’
(the matched gender). We test every illness 𝑖 from a comprehensive
set of 110 illness-related words derived from physical illnesses listed
in the Global Burden of Disease Study 2021 and mental illnesses
recognized by the American Psychological Association (see Appen-
dix A.4). Gender–Illness LPR(𝑔, 𝑖;𝜃 ) is positive if the probability of
the illness-related prediction 𝑖 is greater in the gendered context 𝑔
than in the context mentioning ‘a man’—and negative otherwise.

4 Results
We empirically test how LMs conceptualize gender using sixteen
pre-trained models, representing different architectures, training
datasets, and parameter sizes. To ensure reproducibility and repli-
cability, we only included publicly available open source models
(four GPT2 models, two RoBERTa models, four T5 models, four
Llama models, and two Mistral models; see Table 1). Model sizes

Model
Category

Transformer
Architecture Training Dataset Specific Model Model

Size

RoBERTa [29] Encoder-only BookCorpus, Wikipedia, CC-News,
OpenWebText, Stories

RoBERTa-base 125M
RoBERTa-large 355M

GPT2 [37]
Decoder-only
Autoregressive

WebText

GPT-2 124M
GPT-2 Medium 355M
GPT-2 Large 774M
GPT-2 XL 1.5B

T5 [38] Encoder-Decoder Colossal Clean Crawled Corpus (C4)

T5 Small 60.5M
T5 Base 223M
T5 Large 738M
T5 3B 2.85B

Mistral [25] Decoder-only
Autoregressive

Undisclosed Mistral-7B-v0.3 7.25B
Mixtral-8x7B-v0.1 46.7B

Llama [44]
Decoder-only
Autoregressive

English CommonCrawl, C4, Github,
Wikipedia, Gutenberg and Books3,
ArXiv, Stack Exchange

Llama-3.2-1B 1.24B
Llama-3.2-3B 3.21B
Llama-3.1-8B 8.03B
Llama-3.1-70B 70.6B

Table 1: Overview of the Evaluated Language Models
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range from 60.5 million parameters for the smallest T5 model to
70.6 billion parameters for the largest Llama model, allowing us
to investigate how constructions of gender are learned by mod-
els as they get larger. For each model, we tested both asociations
between gender and sex as well as pathologization of trans and
gender diverse identities.

4.1 Associations between Gender and Sex
Folk Understanding of Sex and Gender. Figure 1 shows that the five
largest models in each category mostly align with the folk under-
standing linking binary sex, male and female, to binary gender, man
and woman (see Appendix A.1 for the remaining smaller models).
Each row presents the results of logP(𝑔 | Context(𝑠);𝜃 ) for a given
sex characteristic context 𝑠 , across every model 𝜃 (column) and gen-
dered prediction 𝑔 (panel barplot). The top five rows are typically
male sex characteristics, and the bottom five rows typically female
sex characteristics. Thus, a highest prediction for 𝑔 = ‘a man’ (resp.
𝑔 = ‘a woman’) in the top five rows (resp. bottom five rows) aligns

with the folk understanding of sex and gender. GPT2, RoBERTa, and
T5 models align with this folk understanding in their top prediction
in a majority of sexed contexts, while the two largest models, Llama
and Mixtral, align in all 10 sexed contexts. We use a logarithmic
scale to represent a wide range of conditional probabilities, making
important differences between the probabilities of ‘a man’ and ‘a
woman’ appear small. Since model probabilities are deterministic
(they do not change when repeatedly calling the same model), even
small differences in probability are meaningful.

Meaningful Embeddings for Transgender and Gender Diverse Identi-
ties. Figure 1 shows that none of the models we tested assign the
highest probability to any gendered term except for ‘a man’ or ‘a
woman’ in any of the sexed contexts. To test whether these terms
are still recognized as meaningful, if not probable, we compare
their probability to a non-human baseline with a horizontal black
line (see Section 3.1.1). This line indicates the median probability
of completing the context with random non-human-related nouns
such as ‘windscreen’ and ‘courthouse’. Thus, completions below
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Figure 1: Probability of gender-related predictions by sex-related context
The figure shows how language models assign gender labels depending on context information about sex characteristics. A black horizontal line indicates the
median probability of completing a context with 47 random, non-human-related nouns. See Appendix A.1 for smaller model results.
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Figure 2: Alignment of Models with Folk Understanding of
Gender by Model Size.
This figure shows the extent to which language models associate male sex
characteristics with men, and female sex characteristics with women. Larger
models (by number of parameters) tend to have stronger associations than
smaller ones (𝜌 = 0.89, 𝑝 < 0.01, Spearman-Rank correlation). For each model,
the Folk-Subversive LPR is calculated using 60 prompts (10 sex contexts, 6 gen-
dered terms).

this line are less likely to be generated than non-human-related
nouns. For instance, the T5-3B probabilities of all gendered com-
pletions except for ‘a man’ and ‘a woman’ consistently fall below
this line, indicating that this model’s embeddings may not have
learned to recognize trans and gender diverse terms as referring to a
person. The probabilities for the terms ‘genderqueer’, ‘genderfluid’,
and ‘two-spirit’ are notably lower than this baseline for multiple
other models. The Mixtral model, for example, consistently assigns
below-random probabilities for all of these terms.

Effect of Model Size. Figure 2 shows that larger LMs encode stronger
associations between sex and gender.We represent Folk–Subversive
LPR(𝜃 ) for each model 𝜃 (see Equation (1)). A high Folk–Subversive
LPR indicates that a model is significantly more likely to predict a
gender that aligns with a sex characteristic according to the folk un-
derstanding, than with a sex characteristic that does not align with
it. All tested models exhibit a positive Folk–Subversive LPR, indi-
cating that even small models have learned normative associations
between gender and sex.

Folk-Subversive LPR increases with model size, reaching a value
of 3.22 for Mixtral-8x7B-v0.1 (46.7 billion parameters) compared to
0.42 for T5-small (60.5 million parameters). Despite some level of
variability intra-category, the largest model of each category has a
higher Folk-Subversive LPR than the smallest model of the same
category. Overall, all LMs appear to learn stronger associations
between sex and gender as they get larger.

Association with Specific Sex Characteristics. Figure 3 showsGender–
Sex LPR(𝑔, 𝑠;𝜃 ) (see Equation (2)) for each tested gendered predic-
tion 𝑔, each pair of sexed contexts (𝑠, 𝑠′), and each model 𝜃 (see
Figure 7 for smaller models). For each barplot, a negative value
indicates that the male sex characteristic makes the gendered pre-
diction more likely, while a positive value indicates the opposite.
For example, we can compare how the probability of gendered
predictions changes depending on if testosterone or estrogen are
mentioned in a context for the Mixtral model. In the ‘a man’ column,

the bar leans more towards ‘testosterone’, indicating that testos-
terone being mentioned in the prompt increased the probability
of this prediction, compared to if estrogen was mentioned in the
context. The opposite is true for ‘a woman’, which is a more likely
prediction when estrogen is mentioned in the context. The proba-
bility for trans and gender diverse terms also increases when the
context mentions estrogen compared to testosterone.

Figures 3 and 7 reveal significant but inconsistent patterns in
how trans and gender diverse identities are associated with sex
characteristics in all tested model categories. Most Gender–Sex
LPR values for 𝑔 = ‘a man’ are negative (indicating greater align-
ment with the male sex characteristic), and this alignment becomes
more consistent for larger models. This pattern is mirrored for
𝑔 = ‘a woman’, which tends to have greater alignment with female
sex characteristics. In contrast, smaller models often assign small
positive Gender–Sex LPR values to other gendered terms, suggest-
ing that their predictions are aligned more closely with female
characteristics, but with inconsistent patterns for larger models.

4.2 Pathologization of Transgender and Gender
Diverse Identities

Mental versus Physical Pathologization. Figures 4 and 8 show how
models associate mental and physical illnesses to women, trans-
gender, and gender diverse identities compared to men. Each panel
represents the distribution of Gender–Illness LPR(𝑔, 𝑖;𝜃 ) (see Equa-
tion (3)) for all 110 illnesses evaluated, separated by illness type, for
a given gendered context 𝑔 (column) and model 𝜃 (row). For each
of the gendered terms, a positive value indicates an illness more
probable than for ‘a man’. For example, mental illnesses are more
probable predictions in contexts mentioning ‘nonbinary’ compared
to ‘a man’ for RoBERTa-Large, since the distribution skews towards
positive values. Likewise, physical illnesses are less probable pre-
dictions in contexts mentioning ‘transgender‘ compared to ‘a man‘
for Mixtral, since the distribution skews towards negative values.

Figures 4 and 8 show that trans and gender diverse identities are
consistently pathologized as related to mental rather than physi-
cal illness. In contrast, while the mental illness distribution for ‘a
woman’ also skews more towards positive values compared to the
physical illness distribution for GPT2 and RoBERTa, this is not the
case for T5, Llama, or Mixtral. While the mental pathologization of
gender identities outside of a folk understanding appears to be a
consistent pattern, there are greater model-specific differences in
the pathologization of women compared to men.

Illnesses by Gender. Figures 5 and 9 show the three illnesses most
associated, and the three illnesses least associated, with various
gender identity terms compared to ‘a man’ by each model. For
example, for GPT2, out of all included illnesses, the probability of
‘post-traumatic stress’ increases the most when ‘transgender’ is
mentioned in a context, compared to ‘a man’. Meanwhile, the proba-
bility of ‘coronavirus’ decreases in this context. While constrasting
these association with existing medical knowledge is beyond the
scope of our work, some of these associations can be easily ruled
out as spurious. For instance, GPT2 is less likely to associate any
of the transgender and gender diverse contexts with coronavirus.
Similarly, Mixtral is less likely to associate transgender and gender
diverse contexts with parasitic worm infections.
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Figure 3: Alignment of gendered terms with male vs. female sex characteristics
The figure shows how language models associate gendered terms with specific sex characteristics. There is a clear pattern of associating ‘a man’ more with male
characteristics, and ‘a woman’ more with female characteristics. See Figure 7 for smaller model results.
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Figure 4: Distribution of Gender–Illness Log Probability Ratio per Gender Context
The figure shows whether illness-related prediction becomemore (>0) or less (<0) probable conditional on the gendered context ‘a woman’, ‘nonbinary’, ‘transgender’,
‘genderqueer’, ‘genderfluid’, or ‘two-spirit’ compared to ‘a man’. Overlapping distributions for mental and physical illnesses suggest similar associations for both
illness types, whereas mental illness distributions skewing further right (as observed for all models in the ‘nonbinary person’ context, for example) indicate a
stronger likelihood of predicting mental rather than physical illness in these contexts. Each mental illness distribution is based on 80 prompts (40 mental illness
terms, 2 gendered terms), and each physical illness distribution is based on 140 prompts (70 physical illness terms, 2 gendered terms). We plot each distribution
using kernel density estimation with Scott’s rule to determine bandwidth. We report significance levels in the top-right corner of each panel ( * 𝑝 < 0.05, ** 𝑝 < 0.01,
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Figure 5: Illnesses Most and Least Associated with Gender Contexts
Each panel shows the three illnesses most associated (>0) and least associated (<0) with a gender context compared to ‘a man’. We abbreviate ‘disorder’ with ‘dis.’. See
Figure 8 for smaller model results.

Overall, as these illnesses make up the tails of the distributions
in Figure 4, illnesses most associated with contexts including trans
and gender diverse terms are mostly mental (mirroring the positive
skew of these distributions in Figure 4), whilst illnesses least asso-
ciated with them are mostly physical. Figure 5 shows that some
models, such as GPT2 and RoBERTa, systematically assign gen-
der identities other than ‘a man’ mental illnesses as most likely.
The degree of association is stronger for trans and gender diverse
identities than for ‘a woman’. In addition, Figure 4 shows which
specific illnesses skew these distributions the most. For example,
body dysmorphia appears among the top three illnesses eight times,
indicating that the models have learned to associate this diagno-
sis with trans and gender diverse identities. However, aside from
body dysmorphia, a range of mental-health-related medical diag-
noses appear in the top-three most associated illnesses in these
contexts. This indicates that no single mental illness is uniquely
associated with such gender identities across all models. Instead,
several mental health conditions, including post-traumatic stress
disorder, panic disorder, and anorexia nervosa, are associated with
trans and gender diverse identities.

5 Discussion
Our findings show that (a) models encode essentializing patterns
as they get larger, by conflating biological sex characteristics with
gender identity, (b) some models do not have any meaningful em-
beddings for words associated with non-folk expressions of gender,
and (c) models learn harmful and pathologizing associations be-
tween words associated with non-folk expressions of gender and
mental illness. These findings lead us to call for a re-evaluation of
how gendered harms in LMs are defined and addressed. Beyond
stereotypical associations, such as between a binary gender and
an occupation, gendered harms can arise from language which re-
enforces the folk understanding of gender as binary, immutable, and
tied to biological sex. We believe that adopting a theory-informed
perspective is key to better audits and corrective actions.

Social construction of gender. The power of language to not
merely reflect, but actively shape, social norms has long been rec-
ognized by social theorists. By providing words to describe some
gendered experiences but not others, language constructs an ‘imag-
inable domain’ according to Butler [5, p. 12]. Narrowly linking
gender and sex renders any other gender separate from sex nearly
‘unimaginable’. In normative scientific classifications linking gender
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and sex, language pathologizes people whose bodies or behaviors
do not fit into these classifications (see Section 2.2). Our results
suggest that LMs, in this regard, are similar to natural language.
LMs, too, link gender to sex in ways that make combinations of
gender and sex which do not align with the folk understanding
increasingly improbable. LMs, too, pathologize genders which fall
outside of normative classifications. Thus, LMs, too, might hold the
power to actively reinforce a folk understanding of gender.

Language provides a path to challenging and changing gender
norms, which Butler calls ‘troubling’ gender. This can be done, e.g.,
by referencing sex and gender in non-normative ways and by using
gendered words beyond the folk understanding. These acts can
expand the ‘imaginable domain’ of gender and, thus, can change
how gender is understood to be. This also presents a path forward
for language model training. Our results suggest that all of the LMs
we tested encode a folk understanding of gender.

Due to their probabilistic nature, new LMs could in theory allow
for sex and gender to be combined in ways which trouble normative
understandings, without necessarily reflecting current linguistic
norms in training sets. At present, LMs are often deployed in user-
facing chatbot applications where users receive one single message
in answer to one typed input. If the model temperature is low, users
will typically only see the most likely word completions, which
will penalize any inference that either reinforce or subvert folk
understandings of gender. If a model’s temperature is not null, and if
this model is interacted with thousands ormillions of times bymany
different users, the variety of generated outputs will nevertheless
be visible. In this way, researchers could actively participate in
shaping social norms, moving towards a more nuanced and less
exclusionary concept of gender [43].

Deployment and downstream use cases. LMs are not only
researched but also deployed and used by millions. The pathologiza-
tion we highlighted can produce direct harm when models are used
to make decisions on people who do not conform to a folk under-
standing of gender. When models associate gender nonconformity
with mental illness, they can be more likely to misdiagnose physical
health issues of gender diverse individuals. This mirrors what his-
torically marginalized groups have been experiencing in healthcare
settings where, e.g., women’s health issues are more likely to be
wrongly put down to mental rather than physical causes [8]. Such
‘diagnostic overshadowing’ of physical health issues can lead to
treatment delays associated with severe health risks [30].

Biased medical decisions arising from the use of LMs in health-
care settings can amplify already existing harms, due to the opacity
of LM decisions and the potential to systematically misdiagnose
millions of gender diverse patients. As these downstream risks
are still poorly understood, we caution against the deployment of
LMs in healthcare settings in which biased medical decisions might
further exacerbate existing health disparities.

Gender audits of language models. Our findings highlight
the importance of adopting a theory-informed perspective when
auditing social concepts such as gender. This perspective enables
auditors to operationalize social concepts and underlying harms
with greater nuance, leading to more in-depth findings compared
to following a folk understanding. Firstly, this approach motivated
us to investigate the intersection of gender, sex, and illness in LMs.
These dimensions are often overlooked in LM gender bias audits,

which are primarily concerned with gender stereotypes (e.g., occu-
pations, emotions) [21, 34]. By highlighting the importance of other
dimensions in addition to such stereotypes, we show that harms can
arise upstream of stereotypes, in the conceptualization of gender
itself. Secondly, a gender bias audit that only takes into account bi-
nary gendered words might not find evidence of any pathologizing
patterns regarding gender identity. However, by adopting a more
nuanced understanding of gender, audits can uncover important is-
sues that would otherwise stay hidden, such as the pathologization
of transgender and gender diverse identities. Here, we tested three
requirements of non-essentialization, meaningful embeddings, and
non-stereotyping embeddings. Our experiments suggest that none
of the tested models could meet all three requirements. We believe
that theory-informed auditing of LMs is key to investigate their
conceptualization of gender before they are released in settings
considered high-risk for gender diverse people.

We conducted all of our experiments in English, to ensure a fair
comparisons between models that were mostly trained on English
data (see Table 2). This monolingual focus prevents us from making
claims about the representation of gender in LMs in other languages.
We believe that our method can be readily adapted to study a more
diverse set of languages. This is especially crucial, as notions of
gender and sex, and of the association between the two, can vary
significantly in different linguistic, cultural, and social contexts [7].

Implications for model debiasing. When theory-informed
audits discover biased representations of gender, their results must
inform debiasing strategies that are just as nuanced to prevent
harm to people who do not conform to a folk understanding of
gender. Otherwise, debiasing strategies run the risk of remaining
surface-level or, in the worst case, even exacerbate the existing
issues. For example, popular debiasing techniques such as rein-
forcement learning with human feedback might further reinforce
a folk understanding of gender if this understanding aligns with
the concept of gender held by the clickworkers employed to review
model outputs. Similarly, strategies that attempt to align models
according to binary gender labels such as ‘man’ and ‘woman’ might
distort or suppress the embeddings of other gender identities, mak-
ing them less distinct or meaningful. Our results show that scaling,
which is sometimes assumed to lead to more nuanced representa-
tions, might actually lead to even stronger normative associations.

To move beyond such limitations, debiasing efforts must rec-
ognize that language both reflects and shapes social concepts. To
account for this, we call for practitioners, policy makers, and aca-
demics to update their evaluation practices by engaging with social
scientists. We need to move beyond trying to ‘fix’ biased models,
and instead engage with how concepts such as gender should be
represented in all stages of the lifecycle of LMs. This includes de-
signing model architectures that make changing fluid concepts
easier, collecting datasets that actively engage with the complexity
of such concepts, developing training processes which do not dis-
count historically marginalized narratives, and deployment only
for use cases in which a lack of gendered harm can be guaranteed.
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A Appendix
A.1 Sex-Gender Results for Smaller Models of Each Category
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Figure 7: Alignment of gendered terms with male versus female sex characteristics
The figure shows how language models associate gendered terms with specific sex characteristics. There is a clear pattern of associating ‘a man’ more with male
characteristics, and ‘a woman’ more with female characteristics.
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A.2 Gender-Illness Results for Smaller Models of Each Category
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Figure 8: Probability of Mental versus Physical Illness Predictions by Gender Context
The figure shows whether illness-related prediction becomemore (>0) or less (<0) probable conditional on the gendered context ‘a woman’, ‘nonbinary’, ‘transgender’,
‘genderqueer’, ‘genderfluid’, or ‘two-spirit’ compared to ‘a man’. Overlapping distributions for mental and physical illnesses suggest similar associations for both
illness types, whereas mental illness distributions skewing further right (as observed for all models in the ‘nonbinary person’ context, for example) indicate a
stronger likelihood of predicting mental rather than physical illness in these contexts. Each mental illness distribution is based on 80 prompts (40 mental illness
terms, 2 gendered terms), and each physical illness distribution is based on 140 prompts (70 physical illness terms, 2 gendered terms). We plot each distribution
using kernel density estimation with Scott’s rule to determine bandwidth. We report significance levels in the top-right corner of each panel ( * 𝑝 < 0.05, ** 𝑝 < 0.01,
*** 𝑝 < 0.001) for a Mann-Whitney U test comparing the mental and physical distributions.
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Figure 9: Illnesses Most and Least Associated with Gender Contexts
Each panel shows the three illnesses most associated (>0) and least associated (<0) with a gender context compared to ‘a man’. We abbreviate ‘disorder’ with ‘dis.’.
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A.3 Additional Information on Included Language Models

Model
Category Developer Specific Model Input

Language
Output
Language

Context
Length

(tokens)

Knowledge
Cutoff

GPT2 [37] OpenAI

GPT-2 English English 1024 2017

GPT-2 Medium English English 1024 2017

GPT-2 Large English English 1024 2017

GPT-2 XL English English 1024 2017

RoBERTa [29] Facebook AI
RoBERTa-base English English 512 ∼2019
RoBERTa-large English English 512 ∼2019

T5 [38] Google

T5 Small English English 512 ∼2019
T5 Base English English 512 ∼2019
T5 Large English English 512 ∼2019
T5 3B English English 512 ∼2019

Llama [44] Meta

Llama-3.2-1B Multilingual Multilingual 128k 2023

Llama-3.2-3B Multilingual Multilingual 128k 2023

Llama-3.1-8B Multilingual Multilingual 128k 2023

Llama-3.1-70B Multilingual Multilingual 128k 2023

Mistral [25] Mistal AI Mistral-7B-v0.3 Multilingual Multilingual 8k ∼2023
Mixtral-8x7B-v0.1 Multilingual Multilingual 32k ∼2023

Table 2: Additional information on each of the 16 evaluated language models
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A.4 Lists of Terms Used for Probing
Mental Health Conditions:

• depression
• bipolar
• dysthymia
• seasonal affective disorder
• anxiety
• panic disorder
• social anxiety
• post-traumatic stress
• acute stress disorder
• obsessive-compulsive disorder
• body dysmorphia
• hoarding disorder
• trichotillomania
• excoriation

• self-harm
• schizophrenia
• delusional disorder
• anorexia nervosa
• bulimia nervosa
• binge eating disorder
• borderline personality
• antisocial personality
• narcissistic personality
• histrionic personality
• avoidant personality
• adhd
• autism
• learning disability

• delirium
• somatic symptom disorder
• dissociative identity
• dissociative amnesia
• depersonalization disorder
• insomnia
• narcolepsy
• kleptomania
• pyromania
• intermittent explosive disorder
• behavioral disorder
• intellectual disability

Physical Health Conditions:

• cancer
• intestinal disorder
• appendicitis
• malnutrition
• injuries
• bedsores
• fever
• malaria
• coronavirus
• stroke
• zika
• arthritis
• heart disease
• pancreatitis
• ebola
• epilepsy
• parkinson’s
• lung disease
• chickenpox
• measles
• sarcomas
• hypertension
• infections
• neuroblastoma

• rabies
• diabetes
• alcoholism
• diphtheria
• brain inflammation
• meningitis
• ear infection
• cold
• pneumonia
• diarrhea
• hiv
• aids
• tuberculosis
• hepatitis
• asthma
• kidney inflammation
• poisoning
• lymphoma
• hodgkin’s disease
• melanoma
• fungal infection
• osteoarthritis
• dracunculiasis
• hansen’s disease

• headaches
• skin inflammation
• acne
• hair loss
• itchy skin
• hives
• viral skin infections
• scabies
• back pain
• gout
• parasitic worm infections
• tapeworm infection
• bilharzia
• high blood pressure
• neck pain
• oral diseases
• parasites
• hearing loss
• iron deficiency
• blindness
• aneurysm
• eye infection

Non-Human Nouns:

• dumbwaiter
• outrigger
• turnstile
• marketing
• moonlight
• afterlife
• deduction
• stonework
• accordion

• nondisclosure
• cultivator
• milestone
• testament
• complement
• windscreen
• courthouse
• watercress
• aftershock

• transparency
• overheard
• preserves
• appetiser
• mezzanine
• apartment
• grasshopper
• autoimmunity
• rediscovery
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• chemotaxis
• watermelon
• encounter
• barometer
• assignment
• vibrissae
• chainstay

• examination
• shortwave
• inglenook
• valentine
• spirituality
• restriction
• pepperoni

• convertible
• contribution
• condition
• subexpression
• cantaloupe
• pollution
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